
Providing Help for Novices Using Expert Knowledge

Simon Bruns
RWTH Aachen University

Simon.Bruns@rwth-aachen.de

Arne Döring
RWTH Aachen University

Arne.Doering@rwth-aachen.de.com

ABSTRACT
In this paper we will guide you through some technolo-
gies that are useful in providing help for novices. It will
introduce many technologies that are useful and some
that are still in development and might be useful in the
future. This paper is all about technology, it does not
give information about how experts and novices should
work together in a team. The technology we present
can be separated into three approaches Support, Rec-
ommendation and Simplification. Support deals with
problems the user encounters while the application is
running. He is able to access a help system, which gives
an appropriate answer to his problem. Additionally the
application considers the users behavior and gives him
tips, how to enhance his abilities, which is known as
Recommendation. Besides the application based help,
the user can learn from experts, how to use an applica-
tion. This paper introduces some techniques of the pre-
sented approaches and states the problems in currently
used realizations. Simplification is the last approach,
which simplifies the process of learning programming.
The novice learns basic structures from which he can
advance to more complex programming languages.

AUTHOR KEYWORDS
Help Systems, Online Help, Support, Simplification,
Recommender System, Design, Human-Factors

INTRODUCTION
Modern applications become more and more complex,
thus many users are overwhelmed by them. Although
these applications have help providing interfaces, they
are often unable to solve the problem of the user. There
are many approaches to deal with this complexity. We
introduce three approaches. The application suggests
the user a solution to his current problem, Support. It
supplies him tips to improve his working process, Rec-
ommendation. A simplified version of the application is
provided to the user, Simplification.

Copyright is held by the authors

SUPPORT
A well known approach in providing help to novices is
support. Beside its obvious use in computing, support
is also present in many different areas. The origin of
computer support has started with simple copies of pa-
pers. This has been the first approach of a computer
help system. Afterwards these documents have been
modified with references, which have improved the us-
age of them. Today help systems are more complex.
They use their own database and have a unique struc-
ture. The collected information of the database is based
on multiple sources. However, the behavior of modern
users is not to use help systems [9]. They prefer to
find an answer on their own, for example when they
are confronted with a new applet, they look for similar
problems in a board. Responsible for this attitude are
certain flaws of current help systems. These flaws can
be divided into three aspects.

The first aspect is the lack of appropriate help [9]. The
given help is not based on the user’s knowledge and
does not consider his current situation. It is mostly
based on answers for generic problems, which consist of
generic information created by the designers. Hence the
user needs a certain amount of background knowledge
to understand these generic problems and their answers.
The user has to refer his problem to the generic one. In
case the user can identify his own problem, the given
answer might also not be fully satisfying or understand-
able, especially for a novice. Furthermore these generic
problems are often outdated, so the user cannot get re-
liable help for up-to-date issues.

The second aspect deals with design flaws [9]. Most help
systems do not use a customized design to present their
database. It is more common to have a simple interface
like a help document. However most users find it rather
difficult to define their problem or even to use the help
system, because of its insufficient design.

The third aspect is about efficiency of solving a prob-
lem. Some problems cannot be solved or updated by
computer assistance, a human expert is then necessary.
But a human expert is more expensive and is limited to
the amount of requests that he can process. As a result,
the creator of a help system needs to find the right bal-
ance between human experts and computer assistance.
Help systems are not able to define the actual problem
of the user, which results into frustration for him and



unnecessary run time [10]. Additionally, they do not
save the log of a support session, which could shorten
the assistance process. The following help systems are
using unique approaches to deal with these aspects.

FAQ
One of the first help systems is Frequently Asked Ques-
tions (FAQ) [4] which has been created on the ARPA-
NET in 1982 [4]. Today it is well known in the Inter-
net, but also in the Usenet it was already known. FAQ
is based on common problem patterns that have been
encountered by human assistance. In order to avoid
repetitive questions, the human assistances write a list
of them with their relevant answers. The created FAQ
can be modified through observation of further problem
encounters or immediate by the expert, if he thinks it
should be added to the FAQ. The resulting FAQ con-
sists of generic problems and is growing over time. FAQ
is one of the oldest help systems and therefore it has
some design flaws. For instance not every problem can
be classified in a question-answer format. Another flaw
is that FAQ in practice has no specific order, so the ad-
vantage of an evolving database works against the idea
of a quick supply of relevant answers. This problem is
caused by the simple structure of FAQ as it is a col-
lection of questions, which has no apparent connection
with each other. In spite of these disadvantages FAQ
is still one of the more commonly used help systems,
because of its easy to grasp structure and its reliabil-
ity. There has been further development on FAQ to
solve the design flaws of it. The resulting help system
is called Answer Garden.

Answer Garden
Answer Garden is a concept from 1990, which solves
the problems of FAQ. It is designed to be used in many
different areas of application such as companies, pro-
gramming and general support. Answer Garden is a
self evolving FAQ database, which organizes the ques-
tion flow of the users through categorizing the questions
into groups. Answer Garden is maintained by three key
ideas:

Structure:
Answer Garden [1] uses a tree structure to organize its
database also called branch network. Each root con-
sists of multiple leafs, which split the content range
into subdivisions. In the process this structure is dy-
namic. Thereby popular problems are pulled up within
the structure to guarantee a quick help supply. Further-
more experienced users can skip parts of it with a small
model of the database (tree model) within the Answer
Garden. Because of its dynamic structure, the Answer
Garden is easy to modify or to add new content.

Evolving Database:
The database grows over time. Each user can inform the
admins with a notification, if the path he has chosen has
led him to a dead end. If the missing problem is valid to
the network, the admin can add a new question branch

to it. Furthermore in case the user is not satisfied with
the relevant answer or its position within the network,
he can notify the admin and give an annotation, what
is not acceptable. Hence the resulting database is up-
to-date and consists only of expert knowledge.

Defining the Problem:
Answer Garden uses a tree structure to define the prob-
lem of the user. Each level of the tree represents a more
detailed definition of the user’s problem. This definition
is realized through a repetitive question-answer process,
which is an option panel with multiple answers to the
questions of the database. Between each repetition, An-
swer Garden shows the user, what the current answer
of the defined problem is. The user can choose, when
he is satisfied with it.

The concept of Answer Garden solves most of the flaws
of FAQ. It can be modified by the user to improve its
utility and content. In the process the user can even
change the structure of it, so popular problems can be
found faster. But as there has been no detailed imple-
mentation of it, its use in practice is not evaluated.

CHIC
A general problem of classic help systems is the gap be-
tween user and designer. To reduce this gap the idea
of “users help themselves” arouse [9], which is a funda-
mental idea of community based help systems. Com-
munity help systems benefits from a fast response to
not foreseen problem’s at the time of design and their
growing collective memory. Normally these help sys-
tems have an unstructured collective memory; in this
case the usage of a wiki system architecture is advisable.
However community based help systems are hardly in-
tegrated into current applications. Integrating a help
system (build-in one) increases the usability of the help
system and allows a context-sensitive “one-click” help.
Community help in context (CHIC) [9] is the result of
combining these two approaches. The system architec-
ture is divided into three generic modules:

AIM:
The Application Integration Module integrates CHIC
into a desired application. It is responsible for the in-
teraction of user and CHIC system. Furthermore it re-
alizes a context-sensitive help with a “single-click” ac-
cess to other help texts on the Internet or the net based
CBHS-System.

CBHS:
A Community based help system can be a modified ver-
sion of a traditional community with further function-
ality to provide a context-sensitive help.

CAM:
The Context-Aware Adaption Module is the interface
between AIM and CBHS. It associates the existing query
of the AIM with an appropriate entrance point within
the CBHS.



AIM uses two modes to integrate information into the
application. The first one is re-active mode, which mod-
ifies the interface of the application with a characteriz-
ing link of the help content. This link is manually set
by the designer or is automatically set by the CHIC
system, which considers runtime information of the ap-
plication. The second one is pro-active mode. In this
mode the help context dynamically changes in respect
to the current state of the application (figure 1). The
observation of the application is realized by using con-
text identifiers for each state (1). These context iden-
tifiers are also used to associate help entries from the
CBHS with the context (2). Each help entry is con-
nected to its corresponding Wiki page inside the help
system (3). In addition to the actual help special links
are used to add new help entries to a given context.

Figure 1. After accessing CHIC a list of context identi-
fiers is presented (1). The user selects his current prob-
lem (2) and is presented with the corresponding wiki
page (3). [9]

To ensure this the structure used for the CBHS is Atlas-
sian Confluence Wiki. The strength of this wiki is a web
service interface that allows retrieving and adapting the
content via remote procedure calls. Furthermore, it has
a hierarchical organization of the Wiki pages, which en-
ables each page to have sub-pages. A context identifier
is mapped as the name of a Wiki page. The correspond-
ing help entries are mapped as its sub-pages. Besides
these extensions, the user is able to add a comment
or even a question to a community. In this case the
participating users are notified about changes of a help
page. The association of the help text and context is
produced by integrating context identifiers to a partic-
ular state of the application. These context identifiers
have to be unique within the system to distinct between
help entries.

CHIC is a new help system concept, which cannot be
compared to current ones. Because of its structure, it
solves most issues of support. The only problem is the
level of the community users, so it will be necessary to
use experts to ensure the quality of each help page.

AIDE
As CHIC is a new approach to help systems, it is still
based on the classical cognitive theory that knowledge
can be taken out of context. So as long the information
is generic enough for users to adapt to their particu-
lar situation, the help system is sufficient. In this way
the amount of information required to support software
is reduced. But if the user is not as experienced as
the designer of the software and his actions cannot be
foreseen by one, the computer assistant will be insuf-
ficient. The reason for this is that in the process of
de-contextualization, to achieve a generic enough in-
formation, the so called local knowledge is lost. This
knowledge describes the usage of it to its particular in-
formation. Hence the user is not able to adapt to the
information unless he has a certain amount of knowl-
edge [10].

In contrast to the classical cognitive theory stays the
situated action theory, which states that knowledge can
only be interpreted in its context. A help system based
on this theory would keep the contextual information
to a given concept to ensure an intuitive adaption by
the user. To realize this theory you have to produce a
very detailed description of the environment and actions
that take place in it so its implementation is the main
problem. Furthermore, it is difficult to build software
that answers the needs of the user, unless the designer
himself does it. Solving this problem is done by further
analyses on human assistance as they have a situated
process [10].

!

?
?

!

?
?

!

?
?

!

?
?

!

?
?

!

?
?

!

?
?

!

?
?

!

?
?
?

!

?
?
?

!

?
?
?

!

?
?

- Intervention
- Proposition

- Reaction?
!

Legend:

Figure 2. Each proposition is connected to multiple re-
actions. A chosen reaction is symbolized by a link, which
leads to the next intervention. [10]

Human assistance classifies each problem into groups,
which induce different kinds of requests. To define the
problem, human assistance is a multiple-step process, in
which the demander asks repeatedly questions as well



as the assistant asks follow-up questions to them. This
way the definition of the problem is a co-constructed
process, where both ends contribute to it. As this pro-
cess is a learning one, the assistant gets better as he
tackles new requests.

The realization of these concepts is AIDE [10]. The as-
sistance is provided through a dialog between the user
and the system. In the process the demander gradu-
ally describes his situation and his needs. The system
follows-up with an intervention composed of a proposi-
tion and a series of reactions from which the demander
can choose from to further describe his request. This
dialog is repeated till the demander is satisfied with the
proposition of the system. Figure 2 is an overview of
this process. The circles are the interventions, the ex-
clamation marks (!) are the propositions and the ques-
tion marks (?) are the offered reactions of the system.
The corresponding intervention to the selected request
of the user is represented by a link (→) between them.

The course of AIDE’s assistance can be divided into
three parts. At first it asks the user questions to de-
termine the user’s problem. After this it asks further
questions to specify the kind of request. At last it tries
to identify the specific needs of the user based on the
selections before and make a proposition to which the
user either reacts to further define his problem or accept
it. Not every user can correctly identify his problem,
therefore the system adds to the selectable reactions
further ones, who are not directly connected to the de-
fined problem so far. Furthermore the user is able to
add new requests with the option “Suggestion”, which
would have improved the course of his definition pro-
cess. These suggestions are monitored by the editor to
ensure a correct database. In case an experienced user
is working with AIDE, it is possible for him to skip
parts of the dialog with a hierarchical overview of the
database, figure 3.

Figure 3. From the left frame the user can access a
deeper level of the tree structure with his desired infor-
mation. [10]

As AIDE is one of the first help systems, which tries to
mimic a human assistance, its design benefits greatly
the support idea. However the database behind AIDE
is not growing per request so the issue of up to date
help is not fixed. And it has to be administrated by an
experienced user to ensure an appropriate result.

Sikuli Search
Another approach, which benefits from analyzing hu-
man behavior, is Sikuli Search [11]. In a human-to-
human communication, the description of an object is
done by visualizing it to each other. This approach
is commonly known as image search. Instead of you
describing the object (e.g. GUI element), the user can
define it by using the picture of the object as a query. In
particular novices benefit from this approach, because
they aren’t necessary able to identify the unknown ob-
ject especially if it is a GUI element.

The first step in creating a help system based on im-
age search is to extract images from a wide variety of
tutorials, documentations, books, etc.. In the case of
Sikuli Search the medium for the images are screen-
shots, which have been taken by the user or creator. To
organize the system each taken screenshot is indexed by
it.

After filling the database, the screenshots are modified
with a set of visual words. A visual word is a vec-
tor of values describing the visual properties of a small
patch in an image. The patches are well-defined, so
scale, translation, brightness and rotations variations
won’t influence them. As a screenshot consists of many
patches, each patch is indexed explicitly.
Many GUI elements contain text; thereby they can be
identified based on embedded text extraction by opti-
cal character recognition (OCR). In spite of using raw
extracted string by OCR, the string is computed into
3-gram characters.

Figure 4. The desired part of the desktop is selected
(Capture Screenshot) and compared to the help database
of Sikuli (Search Documentation). The found article can
be modified (Save Custom Annotations). [11]



Sikuli Search can be accessed anytime and anywhere in
the running system through a predefined hot-key. The
region of interest is pointed out by using a rubber-band
rectangle to mark it. In the process small errors are
corrected, since the screenshot representation scheme
allows inexact matches. The image within the rectan-
gle is used as a query by the system. After comparing
the query with the screenshots in the database a web
browser is opened to display the results. An example for
this is shown in figure 4. The user can add annotations
afterwards to the images, which allows customizing the
database.

In comparison to word based search engines, the re-
sults of image engines have the same quality, but a
faster query. Sikuli Search represents a new approach
to search engines in general. As mentioned before the
advantages of visualizing the problem of a user results
in a more intuitive use of the system. However again
the database is static and has to be maintained by an
experienced user.

Yahoo Answers
Until now we have discussed new technologies in sup-
port that provide help to novice users. Each of them
had a unique approach with a specific structure and de-
sign. However modern users do not use help systems
to solve their problems, they prefer to seek their help
through search engines like Google or communities like
Yahoo Answers.

Yahoo Answers [2] users can interact with each other
through a question and answer format. A user posts
his questions to a specific problem and other users reply
directly to it. However the other users are only able to
reply once to a question. These interactions are posted
within categories. The distinction between a user, who
answers or asks questions, depends on the current cat-
egory e.g. in the programming category only user with
higher level of knowledge answers [2]. The users rate
the replies and determine in the process the best given
answer, which is not necessary an expert answer. The
best given answer is not only the correct one, it also has
some other traits like detailed description or a practical
example.

Communities like Yahoo Answers have many benefits
for novice users or in general users. It is more comfort-
able to interact with other human beings and to select
one solution from different sources. Furthermore, the
users rate the replies of other ones, so they can find
their desired answer in old posts.

RECOMMENDATION
A recommendation is a tip that improves the abilities of
the user. Responsible for giving recommendations are
so called recommender systems. A good recommender
system has to pay attention to certain aspects. It has
to consider the knowledge of the user and the qual-
ity of the recommendation. Hence the recommendation

should either be a novel one or a useful one [7]. Novel
recommendations are unfamiliar commands for the user
and useful ones are commands that are useful to the
user immediate or in future work. The combinations
of both recommendation aspects is a two dimensional
space with three categories of recommendations, figure
5.

Familiar Commands Novel Commands

Useful
Commands

Unuseful
Commands

Good 
Recommendations

Unnecessary
Recommendations

Poor Recommendations

Figure 5. Quality of recommendation. [7]

The first category are the good recommendations con-
sisting of commands fitting both, useful and novel rec-
ommendations. The second category are the poor rec-
ommendations, which are of no use for the user. The
third category are the unnecessary recommendations
that are useful known commands for the user. An un-
necessary recommendation can either improve the user’s
confidence or can irritate the user as it is already known
to him [7]. Besides these aspects it is important for a
recommender system to have a good design. A recom-
mender system should be installed in the background
of the interface so it does not disturb the user when
he is working. Furthermore the user should be able to
access it within his current applet all the time. [7] The
following recommender systems consider these aspects.

OWL
OWL, organization-wide learning [3], is a recommender
system from 1998. Before using OWL the participants
are divided into peer groups, which are equivalent to
their specific division with the company. Each group
consists of experts, who have variable level of knowl-
edge. The resulting database records how often the
participant has used certain commands in his code re-
sulting to an individual user model. In doing so the rec-
ommendation for each individual is about ’what to learn
next’ considering the command use in his respective
peer group. The recommendation is based on the us-
ability and frequency of the command within the data-
base. Furthermore an expert model is created by com-
paring each user model of a peer group by giving each
command a certain expected value. This expert model
is further modified by marking the importance of each
command to avoid unnecessary recommendations, it is
called expected model. OWL decides the importance of
a command by considering its appearance in the peer
group.

The presentation of recommendations is handled by two
methods. The first one is the active method, Intelligent
Tips, which displays a recommendation when the util-



ity of a recommendation is rather certain. The second
method is the passive one, also called skillometer, which
provides an interface. The user himself explores his and
other expected models to learn new commands.

As OWL is a very old concept and has never been im-
plemented or evaluated in detail, it is not clear if it’s ap-
proach is correct, because the recommendations are lim-
ited to the commands used within the company. Hence
it is unlikely for this concept to work for an entire user
community [7].

Community Commands
A new similar recommender system is Community Com-
mands [7], which also personalizes the command recom-
mendation using collaborative filtering algorithm. As
OWL, the database of Community Commands collects
data of monitored users for a certain amount of time.
After this the collected data is rated for each user indi-
vidually. The rating is based on the frequency the user
has used the command. The collaborative filtering algo-
rithm evaluates the modified data and predicts how the
user would “rate” commands not known to him. The
system then generates a top ten list of commands the
user can access when he desires. This is shown in figure
6.

Figure 6. Generation individual top ten list. [7]

The two most commonly used collaborative filtering al-
gorithms are user-based and item-based, which inputs
are the command history of each user in the community
and the command history of the current user, who gets
the recommendation, who is called active user. User-
based collaborative filtering creates a group of users
most similar to the active one. It averages the group’s
command frequency to generate the group’s command
expected frequency table for the user. The table is
changed after a certain amount of time to avoid sug-
gesting known commands to the active user. Item-based
collaborative filtering creates a group of unused similar
commands to the ones the active user knows. The re-
sulting top ten list is sorted by the similarity of the
unknown commands and already known commands of
the active user.

Both algorithms have two modifications in Community
Commands to improve the quality of recommendation.
One modification is upgrade, which ignores recommen-
dations when the recommended command is less effi-
cient as a known one. The other one is equivalences. It
avoids a recommendation of a command that is syntac-
tical different but has the same semantic as a command
known to the user.

The concept behind community commands elegantly
deals with the requirements of recommender systems.
Especially the idea of an individualized recommenda-
tion greatly improves the quality of it.

HelpMeOut
HelpMeOut [5] is a crowd sourced recommendation sys-
tem for programmers. The idea is to suggest possible
solutions for errors in their programs. All suggestions
are created from collected data of the users.

Novices start programming by modifying existing code.
They seek for help in e.g. online forums [5]. The hy-
pothesis behind HelpMeOut is suggesting possible solu-
tions from similar problems directly into the program-
ming environment helps users to correct their problems
faster.

HelpMeOut tries to collect code changes that made er-
ror state code into error free state code. HelpMeOut
realizes this with syntax errors as well as with runtime
errors. Every time the user starts or compiles his pro-
gram and he gets an error message. HelpMeOut saves
this message its source file. As soon as the program
surpasses the last point of failure it marks the error as
fixed and sends the code difference to the Server. For
compile errors, the error message is enough to determine
whether an error has been solved or not. Stack trace,
execution count of lines and input are important to run
time exceptions. Each error results in a query to col-
lect the best matching and error correcting suggestions.
Suggestions are ordered by source similarity, stack trace
similarity and user voting. They are displayed into the
IDE (figure 7).

Figure 7. Suggestion for runtime error, which includes
an explanation of the fix. [5]



The user study showed that 49% of the queries were
useful suggestion. The study only lasted over 39 person-
hours and the system heavily relied on user contribu-
tions, so it was surprising to achieve such a number.
But the ratio between useful and not useful queries did
not increase over time (figure 8). A reason for this high
ratio in the beginning could be that all novices had the
same tasks and might have run into the same problems.
Furthermore the lack of improvement over time might
be explained with a bad structured database where right
suggestions get lost in too many not useful suggestions.

Figure 8. Evolution of useful suggestions over time [5]

SIMPLIFICATION
With Simplifications we mean simplifications of pro-
gramming languages. The past has shown that modern
programming languages like C++ are often too com-
plex for novices to start with them. The novices de-
spair of compiler errors or runtime errors, because they
do not understand enough to solve their problems. To
accommodate this problem, simpler programming lan-
guages have been invented. Early attempts were pro-
gramming languages with a simplified syntax like Logo
and later Pascal. Modern simplified languages also in-
troduce visual elements into the language, to make the
language feel more natural. Sikuli Script allows to have
thumbnails within the letters of the source code, Scratch
completely waives textual input and only uses movable,
visual components.

Scratch
In the late 70s to 80s there was an initial interest to
teach every child how to program. But soon these
projects died out for several reasons. Early program-
ming languages were too difficult for children to learn.
Even the teachers in those days were not programmers
themselves, so they were often not able to give an ap-
propriate support. Additionally beginner programming
courses were connected to activities like sorting lists of
integers or generating prime numbers. Those activi-
ties were not appealing to the students. Today many
programmers learn by downloading and modifying code
from the internet. They get motivated through the com-
ments of other people using their software. This was not
possible in the past. But since computers become more
and more important in our everyday life, the interest
that everybody is able to program increases. Todays

“digital natives”, people who grew up in an environ-
ment, where computers are very common, are very com-
fortable in sending text messages, playing online games,
and using all sorts of interactive media. But they only
interact, they cannot create this type of media. It is as
people could only read, but not write [8].

Scratch is a software project that tries to accommodate
those problems. It is designed to nurture a new genera-
tion that is comfortable using programming to express
their ideas. It should appeal to people who don’t imag-
ine themselves as programmers, especially young chil-
dren. It has to be easy for everyone, no matter what
ages, backgrounds and interests they have. It is not
designed to create the computer scientist of the future,
it is designed to make everybody comfortable with this
way of thinking.

Scratch consists of two main modules. The IDE is the
programming language and a community based web in-
terface.

IDE and language
Many people without deep understanding of program-
ming cannot distinguish the GUI of a system and the
system itself. Even programmers often call for example
Dev-C++ as their compiler. This type of thinking is
described as “the GUI is the System”, transferred to
programming this can be called “the IDE is the pro-
gramming language”. In consideration of this Scratch
has been developed. Scratch does not intend to distin-
guish between IDE and language. So each time lan-
guage appears in this section, both IDE and the lan-
guage is meant.

The language’s design is inspired by Alice and Squeak
Etoys. They are visual programming languages to sim-
plify programming for starters. But those projects were
not satisfying enough to the Scratch team, so they de-
signed their own language. In visual programming lan-
guages you do not write your code with a text editor,
you drag all code segments per drag and drop together.
Scratch also gave them special form and color. Instruc-
tions have little knobs like Lego bricks, to illustrate
how they fit together. Start Blocks, similar to some-
thing like int main() in C, have knobs under them,
to illustrate that there might be placed a block below
them. Control structures and loops are shaped like a
big C and have those knobs inside of them, to show
that instructions are meant to be placed inside of them.
Arguments of expressions are also specially formed to
indicate their data type. Boolean expressions are hexag-
onal shaped and red, while Number type arguments are
round shaped and blue. Objects are directly selected
with a drop down menu. Shapes of instructions not
only give a hint where they can be placed they even
make it impossible to place them at positions that are
syntactically incorrect. In my experiments Scratch was
even resistant to all runtime exceptions, so programs
that have been written in scratch can’t even crash.



Figure 9. One block in two languages

New instructions can be dragged from a categorized list
of commands into the editor and back again. Stacks of
code can be placed wherever you want them to be. You
can move the parts freely across your desktop. They
are not bound to any raster like text based languages.
This allows to hang out parts of the code but leave them
beside the code where it came from. Those free hang-
ing code blocks appear like commented lines of code in
textual languages, but in scratch you can still activate
those blocks by double clicking on them. This is one
core strength of the language. You can execute every
block of code separately, you can even change the code
while it is running. This feature allows more interac-
tion with the program itself, and makes it much easier
to try something out. Even concurrent programming is
essentially easy, because everything you need is to give
two stacks of code an equal starting block, and they
start concurrently. Executing stacks are highlighted so
that is always visible what is going on. This debugging
feature by default also helps to understand the flow of
a program. On the right side of the IDE there is an
always visible window that shows the scene to interact
with. Scratch does not have a command line like most
programming languages have, it serves this little 2D
scene to interact with. On the scene you can create and
place new objects. The program controls those objects.
The scene also represents the final project. This sort
of graphical media has been chosen, because it is much
more appealing to children than lines on a black and
white console. At last there is the publish button. This
button publishes the complete project onto the scratch
website and shares it with the community. This is done
with just one button click.

Scratch Website
The website allows browser based access to all Scratch
applications. Its structure is very similar to YouTube,
but instead of having videos it serves interactive scratch
projects. A sample project can be seen in figure 10. An-
other key difference is that all projects are forced to be
open source. The reason that leads to this decision was
that the people should learn from each other. And many
studies have shown that learning by modifying found ex-
amples is easier than creating from scratch all the time.
To give tribute to the original author of modifications,
there has been introduced the remix functionality. Af-

ter downloading, modifying and uploading the project
again, the website marks it as a remix with a link to the
original one. Also remixed projects get links to their
remixes. The names remixing and scratching both have
their origin in activities from a DJ, because remixing
a scratch project should feel like remixing tapes like a
DJ.

Figure 10. A sample project from the website

Even scratch is still in development, its first version was
released in 2007. Since then the website has grown and
has more than 1,500 new projects are added to the site
each day, there are currently nearly 1,500,000 projects
hosted on their website. The age of the community
is between 8 and 16 with a peak at 12, but Scratch’s
simplicity also attracts many adults too. Already some
schools started to teach scratch to their students. With
this development scratch can only be seen as great suc-
cess. [8]

Alternatives
Scratch is not the only simplified programming lan-
guage that works completely on visual elements. Two
of the alternatives are Alice and App Inventor. They
both share the concept of programming with command
bricks, but they both have their advantages and disad-
vantages compared to Scratch.

Alice was invented much earlier than Scratch. Its first
release was in 1999. The developers designed syntax
of the command bricks close to Java syntax, in order
to be able to export the source into Java files and back
again. Additionally this allows the user an easier transi-
tion to pure Java. Alice is designed to animate sketches
in a 3D environment (figure 11). In this environment
the user can place objects very similar to the scene
in Scratch. Creating content for a 3D environment is



also more complicated than making simple sprites like
the scratch content. Thus the University, where Al-
ice has been developed, has entered to a collaboration
with Electronic Arts to enable the users to import all
types of content from the video game “The Sims”. The
close development of the language to the Java syntax
has also its disadvantages. Today Java is indeed one of
the most common programming language at universi-
ties, but they are not intended to teach the students to
program Java, their main focus is to teach them pro-
gramming in independent of the language.

Figure 11. a scene created in Alice [You Tube]

App Inventor for Android is the newest invention that
uses blocks to program. It is developed by Google and
got its first release in December 2010. This program
allows to write applications for the Android operating
system. The language is designed with much influence
of Scratch, but Instead of having a scene with mov-
able objects, App Inventor uses a classical GUI builder
to create programs. So the main focus of applications
developed with App Inventor are intended to be more
mature than the Scratch creations. The main disadvan-
tage of App Inventor is that it only supports Android
mobile devices to develop software for at the moment.
But in the future App Inventor could develop into a
complete software development IDE that is not limited
to a single platform. Figure 12 shows how a source file
looks like.

Figure 12. App Inventor Hello World

Sikuli Script
Sikuli Script [11] is an image based technology. It is an
extension of the scripting language python with image
searching algorithms and direct image representation in
the language itself. Sikuli Script uses its image search
capabilities to use the GUI directly as an API. Instead
of calling named functions in an API you can import
images of certain GUI elements directly into the script-
ing language. Then you can perform input operations
on them like clicking and typing.

Most programming or scripting languages require knowl-
edge over an API to automate some tasks in the envi-
ronment. But users are often only confronted with a
GUI. So there is always the burden to learn the API
before any script writing is possible. Sikuli Script can
directly operate on any GUI, therefore there is no bur-
den to learn the API anymore. Though Sikuli Script
was developed to automate tests for GUIs, it is also a
great improvement in teaching programming. The com-
mon way of programming requires a certain amount of
knowledge before the first useful program can be writ-
ten. The simplicity and the visual integration of images
in the code removes a bigger part of this required knowl-
edge. After the first lesson a student might already be
able to write a useful script that automates a simple
task.

The scripting language itself is just a dialect of python
that allows to have thumbnails of images (patterns)
within the source code. With the select tool it is possi-
ble to select a region on the screen that is then trans-
formed into a pattern in the code. Patterns are primary
used for searching. e.g.: click() gets one pattern as pa-
rameter. At first it locates the pattern on the current
screen, then one mouse click will be simulated on the
location of the pattern. Patterns can also be general-
ized. Pattern(a).similar(0.8).anyColor().anySize() is a
Pattern that accepts all images with at least 80% sim-
ilarity, that may have a different color and a different
size. But the less accurate a pattern is, the longer it
will take the computer to find it. A simple snippet that
filters phone calls is presented in figure 13. Here are
patterns used as a key in a dictionary.

Sikuli Script is not a universal solution. Because it is
working directly on the screen data, it is limited to ev-
erything that is also visible to the user. If something is
hidden by another window, Sikuli Script cannot find it.
On the other hand using only screen shots for search-
ing makes Sikuli Script very portable to all platforms.
Currently it is available for Mac, Linux and Windows.
But the easier the porting of Sikuli Script is, the harder
the porting of the scripts is. All scripts are very depen-
dent of the skin or style of the GUI on the developer’s
computer. The change of one color in the developers
desktop environment can cause that all scripts will not
be able to work anymore. This dependence on the style
of the system and the limitation to screen data, make
these scripts very useless in real application develop-



ment. Here Sikuli Script should stay inside of the test
environment where it is developed for.

Figure 13. A snippet in Sikuli Script

CONCLUSION
In the field of support most concepts could solve the
flaws of currently used help systems. However a big-
ger part of these concepts haven not been realized in
practice. Therefore potential approaches to improve
distribution of help are wasted. Responsible for this
is the lack of sufficient user studies. The exceptions to
this are AIDE and CHIC, who have sufficient user stud-
ies and a detailed implementation. Another problem is
the general attitude towards help systems, which make
them less interesting to analyze. Modern users prefer
to use search engines or communities to seek an answer
to their problem. So future research should consider a
combination of help systems and such media.
In contrast Recommendation are often used by users to
improve their working experience. The presented con-
cept of community commands introduces many new as-
pects like using a community based database. Therefore
it can deliver an individual and dynamic recommenda-
tion according to the needs of the user. Additionally
it considers old concepts like OWL to learn from their
flaws. On the other hand, HelpMeOut helps the user
to understand errors and debug them. In the future
these systems could be great tools to get used to new
programming languages.
Simplification provides an easy start to learn basic pro-
gramming. In providing development tools suited for
children the way how programming will be taught at
schools could change very much in the future. But if
the children get used to a simplified general program-
ming language, they might not want to learn new more
complex languages. In the past pascal was developed
as a teaching language, and was later used in the in-
dustry, because the people were already used to that

language [6]. This development could also happen to
languages like Scratch.

REFERENCES
1. M. S. Ackerman and T. W. Malone. Answer

garden: a tool for growing organizational memory.
In Proceedings of the ACM SIGOIS and IEEE CS
TC-OA conference on Office information systems,
COCS ’90, pages 31–39, New York, NY, USA,
1990. ACM.

2. L. A. Adamic, J. Zhang, E. Bakshy, and M. S.
Ackerman. Knowledge sharing and yahoo answers:
everyone knows something. In Proceeding of the
17th international conference on World Wide
Web, WWW ’08, pages 665–674, New York, NY,
USA, 2008. ACM.

3. D. J. Frank Linton, Andy Charron. Owl: A
recommender system for organization-wide
learning. AAAI Technical Report WS-98-08, pages
65–69, 1998.

4. C. A. Halverson, T. Erickson, and M. S.
Ackerman. Behind the help desk: evolution of a
knowledge management system in a large
organization. In Proceedings of the 2004 ACM
conference on Computer supported cooperative
work, CSCW ’04, pages 304–313, New York, NY,
USA, 2004. ACM.

5. B. Hartmann, D. MacDougall, J. Brandt, and
S. R. Klemmer. What would other programmers
do: suggesting solutions to error messages. In
Proceedings of the 28th international conference on
Human factors in computing systems, CHI ’10,
pages 1019–1028, New York, NY, USA, 2010.
ACM.

6. M. Hill. Why pascal is not my favorite
programming language. paper.

7. J. Matejka, W. Li, T. Grossman, and
G. Fitzmaurice. Communitycommands: command
recommendations for software applications. In
Proceedings of the 22nd annual ACM symposium
on User interface software and technology, UIST
’09, pages 193–202, New York, NY, USA, 2009.
ACM.

8. M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai. Scratch: programming for all. Commun.
ACM, 52:60–67, November 2009.

9. G. Stevens and T. Wiedenhöfer. Chic - a pluggable
solution for community help in context. In
Proceedings of the 4th Nordic conference on
Human-computer interaction: changing roles,
NordiCHI ’06, pages 212–221, New York, NY,
USA, 2006. ACM.



10. L. Vouligny and J.-M. Robert. Online help system
design based on the situated action theory. In
Proceedings of the 2005 Latin American conference
on Human-computer interaction, CLIHC ’05,
pages 64–75, New York, NY, USA, 2005. ACM.

11. T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli:
using gui screenshots for search and automation.
In Proceedings of the 22nd annual ACM
symposium on User interface software and
technology, UIST ’09, pages 183–192, New York,
NY, USA, 2009. ACM.


